{ "id": "0710.0692", "version": "v2", "published": "2007-10-03T02:14:34.000Z", "updated": "2007-10-29T11:56:28.000Z", "title": "Entanglement renormalization in fermionic systems", "authors": [ "G. Evenbly", "G. Vidal" ], "comment": "5 pages, 4 figures Second appendix added", "journal": "Phys. Rev. B 81, 235102 (2010)", "categories": [ "quant-ph" ], "abstract": "We demonstrate, in the context of quadratic fermion lattice models in one and two spatial dimensions, the potential of entanglement renormalization (ER) to define a proper real-space renormalization group transformation. Our results show, for the first time, the validity of the multi-scale entanglement renormalization ansatz (MERA) to describe ground states in two dimensions, even at a quantum critical point. They also unveil a connection between the performance of ER and the logarithmic violations of the boundary law for entanglement in systems with a one-dimensional Fermi surface. ER is recast in the language of creation/annihilation operators and correlation matrices.", "revisions": [ { "version": "v2", "updated": "2007-10-29T11:56:28.000Z" } ], "analyses": { "subjects": [ "05.50.+q", "03.67.Mn", "05.10.Cc", "05.70.Jk" ], "keywords": [ "fermionic systems", "proper real-space renormalization group transformation", "quadratic fermion lattice models", "multi-scale entanglement renormalization ansatz", "one-dimensional fermi surface" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review B", "doi": "10.1103/PhysRevB.81.235102", "year": 2010, "month": "Jun", "volume": 81, "number": 23, "pages": 235102 }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010PhRvB..81w5102E", "inspire": 1368958 } } }