{ "id": "0710.0171", "version": "v1", "published": "2007-09-30T20:39:57.000Z", "updated": "2007-09-30T20:39:57.000Z", "title": "A note on energy currents and decay for the wave equation on a Schwarzschild background", "authors": [ "Mihalis Dafermos", "Igor Rodnianski" ], "comment": "10 pages", "categories": [ "math.AP", "gr-qc", "math.DG" ], "abstract": "In recent work, we have proven uniform decay bounds for solutions of the wave equation $\\Box_g\\phi=0$ on a Schwarzschild exterior, in particular, the uniform pointwise estimate $|\\phi|\\le Cv_+^{-1}$, which holds throughout the domain of outer communications, where $v$ is an advanced Eddington-Finkelstein coordinate, $v_+=\\max\\{v,1\\}$, and $C$ is a constant depending on a Sobolev norm of initial data. A crucial estimate in the proof required a decomposition into spherical harmonics. We here give an alternative proof of this estimate not requiring such a decomposition.", "revisions": [ { "version": "v1", "updated": "2007-09-30T20:39:57.000Z" } ], "analyses": { "keywords": [ "wave equation", "energy currents", "schwarzschild background", "proven uniform decay bounds", "schwarzschild exterior" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0710.0171D" } } }