{ "id": "0709.4509", "version": "v1", "published": "2007-09-27T23:22:32.000Z", "updated": "2007-09-27T23:22:32.000Z", "title": "A recursion formula for k-Schur functions", "authors": [ "Daniel Bravo", "Luc Lapointe" ], "comment": "18 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "The Bernstein operators allow to build recursively the Schur functions. We present a recursion formula for k-Schur functions at t=1 based on combinatorial operators that generalize the Bernstein operators. The recursion leads immediately to a combinatorial interpretation for the expansion coefficients of k-Schur functions at t=1 in terms of homogeneous symmetric functions.", "revisions": [ { "version": "v1", "updated": "2007-09-27T23:22:32.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "k-schur functions", "recursion formula", "bernstein operators", "homogeneous symmetric functions", "expansion coefficients" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.4509B" } } }