{ "id": "0709.4348", "version": "v1", "published": "2007-09-27T15:03:30.000Z", "updated": "2007-09-27T15:03:30.000Z", "title": "The Hall algebra of a cyclic quiver at $q=0$", "authors": [ "Stefan Wolf" ], "categories": [ "math.RT", "math.RA" ], "abstract": "We show that the generic Hall algebra of nilpotent representations of an oriented cycle specialised at $q=0$ is isomorphic to the generic extension monoid in the sense of Reineke. This continues the work of Reineke.", "revisions": [ { "version": "v1", "updated": "2007-09-27T15:03:30.000Z" } ], "analyses": { "subjects": [ "16G20" ], "keywords": [ "cyclic quiver", "generic hall algebra", "generic extension monoid", "nilpotent representations", "isomorphic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.4348W" } } }