{ "id": "0709.3697", "version": "v1", "published": "2007-09-24T07:41:12.000Z", "updated": "2007-09-24T07:41:12.000Z", "title": "On the harmonic oscillator on the Lobachevsky plane", "authors": [ "P. Stovicek", "M. Tusek" ], "comment": "to appear in Russian Journal of Mathematical Physics (memorial volume in honor of Vladimir Geyler)", "doi": "10.1134/S1061920807040152", "categories": [ "math-ph", "math.MP" ], "abstract": "We introduce the harmonic oscillator on the Lobachevsky plane with the aid of the potential $V(r)=(a^2\\omega^2/4)sinh(r/a)^2$ where $a$ is the curvature radius and $r$ is the geodesic distance from a fixed center. Thus the potential is rotationally symmetric and unbounded likewise as in the Euclidean case. The eigenvalue equation leads to the differential equation of spheroidal functions. We provide a basic numerical analysis of eigenvalues and eigenfunctions in the case when the value of the angular momentum, $m$, equals 0.", "revisions": [ { "version": "v1", "updated": "2007-09-24T07:41:12.000Z" } ], "analyses": { "keywords": [ "lobachevsky plane", "harmonic oscillator", "angular momentum", "basic numerical analysis", "curvature radius" ], "tags": [ "journal article" ], "publication": { "journal": "Russian Journal of Mathematical Physics", "year": 2007, "month": "Dec", "volume": 14, "number": 4, "pages": 493 }, "note": { "typesetting": "TeX", "pages": 0, "language": "ru", "license": "arXiv", "status": "editable", "adsabs": "2007RJMP...14..493S" } } }