{ "id": "0709.3534", "version": "v2", "published": "2007-09-21T23:46:14.000Z", "updated": "2007-10-06T16:58:08.000Z", "title": "Meridional Almost Normal Surfaces in Knot Complements", "authors": [ "Robin T. Wilson" ], "comment": "23 pages, 9 figures", "categories": [ "math.GT" ], "abstract": "Suppose $K$ is a knot in a closed 3-manifold $M$ such that $\\bar{M-N(K)}$ is irreducible. We show that for any positive integer $b$ there exists a triangulation of $\\bar{M-N(K)}$ such that any weakly incompressible bridge surface for $K$ of $b$ bridges or fewer is isotopic to an almost normal bridge surface.", "revisions": [ { "version": "v2", "updated": "2007-10-06T16:58:08.000Z" } ], "analyses": { "subjects": [ "57M99" ], "keywords": [ "normal surfaces", "knot complements", "meridional", "normal bridge surface", "weakly incompressible bridge surface" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.3534W" } } }