{ "id": "0709.3108", "version": "v1", "published": "2007-09-19T20:56:59.000Z", "updated": "2007-09-19T20:56:59.000Z", "title": "Integrable systems without the Painlevé property", "authors": [ "Alfred Ramani", "Basile Grammaticos", "Sébastien Tremblay" ], "journal": "Journal of Physics A: Mathematical and General, 2000, 33, No 15, 3045-3052", "doi": "10.1088/0305-4470/33/15/311", "categories": [ "math-ph", "math.MP" ], "abstract": "We examine whether the Painlev\\'e property is a necessary condition for the integrability of nonlinear ordinary differential equations. We show that for a large class of linearisable systems this is not the case. In the discrete domain, we investigate whether the singularity confinement property is satisfied for the discrete analogues of the non-Painlev\\'e continuous linearisable systems. We find that while these discrete systems are themselves linearisable, they possess nonconfined singularities.", "revisions": [ { "version": "v1", "updated": "2007-09-19T20:56:59.000Z" } ], "analyses": { "keywords": [ "integrable systems", "nonlinear ordinary differential equations", "singularity confinement property", "large class", "possess nonconfined singularities" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Physics A Mathematical General", "year": 2000, "month": "Apr", "volume": 33, "number": 15, "pages": 3045 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2000JPhA...33.3045R" } } }