{ "id": "0709.3082", "version": "v1", "published": "2007-09-19T18:11:17.000Z", "updated": "2007-09-19T18:11:17.000Z", "title": "The martingale problem for a class of stable-like processes", "authors": [ "Richard F. Bass", "Huili Tang" ], "categories": [ "math.PR" ], "abstract": "Let $\\alpha\\in (0,2)$ and consider the operator $$L f(x) =\\int [f(x+h)-f(x)-1_{(|h|\\leq 1)} \\nabla f(x)\\cdot h] \\frac{A(x,h)}{|h|^{d+\\alpha}} dh, $$ where the $\\nabla f(x)\\cdot h$ term is omitted if $\\alpha<1$. We consider the martingale problem corresponding to the operator $L$ and under mild conditions on the function $A$ prove that there exists a unique solution.", "revisions": [ { "version": "v1", "updated": "2007-09-19T18:11:17.000Z" } ], "analyses": { "subjects": [ "60J75" ], "keywords": [ "stable-like processes", "mild conditions", "unique solution", "martingale problem corresponding" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.3082B" } } }