{ "id": "0709.2947", "version": "v1", "published": "2007-09-19T03:36:21.000Z", "updated": "2007-09-19T03:36:21.000Z", "title": "Sums of Products of Bernoulli numbers of the second kind", "authors": [ "Ming Wu", "Hao Pan" ], "comment": "Accepted by the Fibonacci Quarterly", "categories": [ "math.NT", "math.CO" ], "abstract": "The Bernoulli numbers b_0,b_1,b_2,.... of the second kind are defined by \\sum_{n=0}^\\infty b_nt^n=\\frac{t}{\\log(1+t)}. In this paper, we give an explicit formula for the sum \\sum_{j_1+j_2+...+j_N=n, j_1,j_2,...,j_N>=0}b_{j_1}b_{j_2}...b_{j_N}. We also establish a q-analogue for \\sum_{k=0}^n b_kb_{n-k}=-(n-1)b_n-(n-2)b_{n-1}.", "revisions": [ { "version": "v1", "updated": "2007-09-19T03:36:21.000Z" } ], "analyses": { "subjects": [ "11B68", "05A19" ], "keywords": [ "bernoulli numbers", "second kind", "explicit formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.2947W" } } }