{ "id": "0709.2946", "version": "v2", "published": "2007-09-19T02:43:58.000Z", "updated": "2009-09-12T04:05:38.000Z", "title": "The relationships between Invertible Module Maps X and X_z", "authors": [ "Yun-Su Kim" ], "comment": "7 pages", "categories": [ "math.FA", "math.OA" ], "abstract": "If $R$ and $M$ are Hilbert modules (in the sense of R. G. Douglas and V. I. Paulsen), we study the relationship between invertible module maps $X:R\\to{M}$ and $X_{z}:R/R_{z}\\to{M/M_{z}}$. In particular, for quasi-free Hilbert modules $R$ and $M$, we provide a condition of a module map $X:R\\to{M}$, such that if $X_{z}:R/R_{z}\\to{M/M_{z}}$ is invertible for every $z$ in a domain $\\Omega$ in the complex plane, then $X$ is also invertible.", "revisions": [ { "version": "v2", "updated": "2009-09-12T04:05:38.000Z" } ], "analyses": { "subjects": [ "46C99", "46E20", "46B15" ], "keywords": [ "invertible module maps", "relationship", "quasi-free hilbert modules", "complex plane" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.2946K" } } }