{ "id": "0709.2878", "version": "v1", "published": "2007-09-18T16:46:21.000Z", "updated": "2007-09-18T16:46:21.000Z", "title": "Singular limits for the bi-laplacian operator with exponential nonlinearity in $\\R^4$", "authors": [ "Mónica Clapp", "Claudio Muñoz", "Monica Musso" ], "comment": "30 pages, to appear in Ann. IHP Non Linear Analysis", "categories": [ "math.AP" ], "abstract": "Let $\\Omega$ be a bounded smooth domain in $\\mathbb{R}^{4}$ such that for some integer $d\\geq1$ its $d$-th singular cohomology group with coefficients in some field is not zero, then problem {\\Delta^{2}u-\\rho^{4}k(x)e^{u}=0 & \\hbox{in}\\Omega, u=\\Delta u=0 & \\hbox{on}\\partial\\Omega, has a solution blowing-up, as $\\rho\\to0$, at $m$ points of $\\Omega$, for any given number $m$.", "revisions": [ { "version": "v1", "updated": "2007-09-18T16:46:21.000Z" } ], "analyses": { "keywords": [ "exponential nonlinearity", "singular limits", "bi-laplacian operator", "th singular cohomology group", "solution blowing-up" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008AnIHP..25.1015C" } } }