{ "id": "0709.2663", "version": "v1", "published": "2007-09-17T16:11:18.000Z", "updated": "2007-09-17T16:11:18.000Z", "title": "Regularity of the density for the stochastic heat equation", "authors": [ "Carl Mueller", "David Nualart" ], "journal": "Electronic J. Prob., 13, paper 74, 2248-2258, (2008)", "categories": [ "math.PR" ], "abstract": "We study the smoothness of the density of a semilinear heat equation with multiplicative spacetime white noise. Using Malliavin calculus, we reduce the problem to a question of negative moments of solutions of a linear heat equation with multiplicative white noise. Then we settle this question by proving that solutions to the linear equation have negative moments of all orders.", "revisions": [ { "version": "v1", "updated": "2007-09-17T16:11:18.000Z" } ], "analyses": { "subjects": [ "60H07" ], "keywords": [ "stochastic heat equation", "regularity", "multiplicative spacetime white noise", "negative moments", "semilinear heat equation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.2663M" } } }