{ "id": "0709.2488", "version": "v1", "published": "2007-09-16T12:35:24.000Z", "updated": "2007-09-16T12:35:24.000Z", "title": "Complexity of matrix problems", "authors": [ "Genrich R. Belitskii", "Vladimir V. Sergeichuk" ], "comment": "24 pages", "journal": "Linear Algebra Appl. 361 (2003) 203-222", "doi": "10.1016/S0024-3795(02)00391-9", "categories": [ "math.RT" ], "abstract": "In representation theory, the problem of classifying pairs of matrices up to simultaneous similarity is used as a measure of complexity; classification problems containing it are called wild problems. We show in an explicit form that this problem contains all classification matrix problems given by quivers or posets. Then we prove that it does not contain (but is contained in) the problem of classifying three-valent tensors. Hence, all wild classification problems given by quivers or posets have the same complexity; moreover, a solution of any one of these problems implies a solution of each of the others. The problem of classifying three-valent tensors is more complicated.", "revisions": [ { "version": "v1", "updated": "2007-09-16T12:35:24.000Z" } ], "analyses": { "subjects": [ "15A21", "15A69", "16G20", "16G60" ], "keywords": [ "complexity", "classifying three-valent tensors", "wild classification problems", "classification matrix problems", "problem contains" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.2488B" } } }