{ "id": "0709.1435", "version": "v1", "published": "2007-09-10T16:20:46.000Z", "updated": "2007-09-10T16:20:46.000Z", "title": "Composition operators in the Lipschitz Space of the Polydiscs", "authors": [ "Zhongshan Fang", "Zehua Zhou" ], "comment": "7 pages", "journal": "J. Comput. Anal. Appl. 12 (1-B) (2010) , 222-227", "categories": [ "math.FA", "math.CV" ], "abstract": "In 1987, Shapiro shew that composition operator induced by symbol $\\phi$ is compact on the Lipschltz space if and only if the infinity norm of $\\phi$ is less than 1 by a spectral-theoretic argument, where $\\phi$ is a holomorphic self-map of the unit disk. In this paper, we shall generalize Shapiro's result to the $n$-dimensional case.", "revisions": [ { "version": "v1", "updated": "2007-09-10T16:20:46.000Z" } ], "analyses": { "subjects": [ "47B38", "47B33", "32A16", "32A26", "32A37" ], "keywords": [ "composition operator", "lipschitz space", "shapiro shew", "infinity norm", "dimensional case" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.1435F" } } }