{ "id": "0709.1292", "version": "v4", "published": "2007-09-10T01:00:10.000Z", "updated": "2008-05-17T22:04:08.000Z", "title": "A semiclassical theory of the Anderson transition", "authors": [ "Antonio M. Garcia-Garcia" ], "comment": "4 pages, journal version", "journal": "Phys. Rev. Lett. 100, 076404 (2008)", "doi": "10.1103/PhysRevLett.100.076404", "categories": [ "cond-mat.dis-nn" ], "abstract": "We study analytically the metal-insulator transition in a disordered conductor by combining the self-consistent theory of localization with the one parameter scaling theory. We provide explicit expressions of the critical exponents and the critical disorder as a function of the spatial dimensionality, $d$. The critical exponent $\\nu$ controlling the divergence of the localization length at the transition is found to be $\\nu = {1 \\over 2}+ {1 \\over {d-2}}$. This result confirms that the upper critical dimension is infinity. Level statistics are investigated in detail. We show that the two level correlation function decays exponentially and the number variance is linear with a slope which is an increasing function of the spatial dimensionality.", "revisions": [ { "version": "v4", "updated": "2008-05-17T22:04:08.000Z" } ], "analyses": { "subjects": [ "71.30.+h", "05.60.Gg", "72.15.Rn" ], "keywords": [ "anderson transition", "semiclassical theory", "spatial dimensionality", "critical exponent", "level correlation function decays" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review Letters", "year": 2008, "month": "Feb", "volume": 100, "number": 7, "pages": "076404" }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008PhRvL.100g6404G" } } }