{ "id": "0709.0036", "version": "v3", "published": "2007-09-01T06:57:30.000Z", "updated": "2010-05-31T09:08:08.000Z", "title": "Circular law for non-central random matrices", "authors": [ "Djalil Chafai" ], "comment": "accepted in Journal of Theoretical Probability", "journal": "Journal of Theoretical Probability 23, 4 (2010) 945-950", "doi": "10.1007/s10959-010-0285-8", "categories": [ "math.PR" ], "abstract": "Let $(X_{jk})_{j,k\\geq 1}$ be an infinite array of i.i.d. complex random variables, with mean 0 and variance 1. Let $\\la_{n,1},...,\\la_{n,n}$ be the eigenvalues of $(\\frac{1}{\\sqrt{n}}X_{jk})_{1\\leq j,k\\leq n}$. The strong circular law theorem states that with probability one, the empirical spectral distribution $\\frac{1}{n}(\\de_{\\la_{n,1}}+...+\\de_{\\la_{n,n}})$ converges weakly as $n\\to\\infty$ to the uniform law over the unit disc $\\{z\\in\\dC;|z|\\leq1\\}$. In this short note, we provide an elementary argument that allows to add a deterministic matrix $M$ to $(X_{jk})_{1\\leq j,k\\leq n}$ provided that $\\mathrm{Tr}(MM^*)=O(n^2)$ and $\\mathrm{rank}(M)=O(n^\\al)$ with $\\al<1$. Conveniently, the argument is similar to the one used for the non-central version of Wigner's and Marchenko-Pastur theorems.", "revisions": [ { "version": "v3", "updated": "2010-05-31T09:08:08.000Z" } ], "analyses": { "keywords": [ "non-central random matrices", "strong circular law theorem states", "complex random variables", "empirical spectral distribution", "marchenko-pastur theorems" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0709.0036C" } } }