{ "id": "0708.4045", "version": "v1", "published": "2007-08-30T00:32:37.000Z", "updated": "2007-08-30T00:32:37.000Z", "title": "Stable rank for inclusions of C*-algebras", "authors": [ "Hiroyuki Osaka" ], "comment": "9 pages", "categories": [ "math.OA" ], "abstract": "When a unital \\ca $A$ has topological stable rank one (write $\\tsr(A) = 1$), we know that $\\tsr(pAp) \\leq 1$ for a non-zero projection $p \\in A$. When, however, $\\tsr(A) \\geq 2$, it is generally faluse. We prove that if a unital C*-algebra $A$ has a simple unital C*-subalgebra $D$ of $A$ with common unit such that $D$ has \\PSP and $\\sup_{p\\in P(D)}\\tsr(pAp) < \\infty$, then $\\tsr(A) \\leq 2.$ As an application let $A$ be a simple unital \\ca with $\\tsr(A) = 1$ and \\PSP, $\\{G_k\\}_{k=1}^n$ finite groups, $\\af_k$ actions from $G_k$ to ${\\rm Aut}((...((A\\times_{\\af_1}G_1)\\times_{\\af_2} G_2)...)\\times_{\\af_{k-1}}G_{k-1}).$ $(G_0 = \\{1\\})$ Then $$ \\tsr((... ((A\\times_{\\af_1}G_1)\\times_{\\af_2} G_2)...)\\times_{\\af_n}G_n) \\leq 2. $$", "revisions": [ { "version": "v1", "updated": "2007-08-30T00:32:37.000Z" } ], "analyses": { "subjects": [ "46L05" ], "keywords": [ "inclusions", "simple unital", "non-zero projection", "common unit", "finite groups" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.4045O" } } }