{ "id": "0708.3947", "version": "v2", "published": "2007-08-29T12:37:53.000Z", "updated": "2008-05-14T13:51:57.000Z", "title": "Optimality and uniqueness of the (4,10,1/6) spherical code", "authors": [ "Christine Bachoc", "Frank Vallentin" ], "comment": "12 pages, (v2) several small changes and corrections suggested by referees, accepted in Journal of Combinatorial Theory, Series A", "journal": "J. Comb. Theory Ser. A 116 (2009), 195-204", "doi": "10.1016/j.jcta.2008.05.001", "categories": [ "math.MG" ], "abstract": "Linear programming bounds provide an elegant method to prove optimality and uniqueness of an (n,N,t) spherical code. However, this method does not apply to the parameters (4,10,1/6). We use semidefinite programming bounds instead to show that the Petersen code, which consists of the midpoints of the edges of the regular simplex in dimension 4, is the unique (4,10,1/6) spherical code.", "revisions": [ { "version": "v2", "updated": "2008-05-14T13:51:57.000Z" } ], "analyses": { "subjects": [ "52C17", "90C22" ], "keywords": [ "spherical code", "optimality", "uniqueness", "semidefinite programming bounds", "petersen code" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.3947B" } } }