{ "id": "0708.3924", "version": "v1", "published": "2007-08-29T10:08:13.000Z", "updated": "2007-08-29T10:08:13.000Z", "title": "Best constants for Lipschitz embeddings of metric spaces into c_0", "authors": [ "N. J. Kalton", "G. Lancien" ], "comment": "22 pages", "categories": [ "math.FA" ], "abstract": "We answer a question of Aharoni by showing that every separable metric space can be Lipschitz 2-embedded into $c_0$ and this result is sharp; this improves earlier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best constant for Lipschitz embeddings of the classical $\\ell_p-$spaces into $c_0$ and give other applications. We prove that if a Banach space embeds almost isometrically into $c_0$, then it embeds linearly almost isometrically into $c_0$. We also study Lipschitz embeddings into $c_0^+$.", "revisions": [ { "version": "v1", "updated": "2007-08-29T10:08:13.000Z" } ], "analyses": { "subjects": [ "46B20", "46T99" ], "keywords": [ "best constant", "banach space embeds", "study lipschitz embeddings", "separable metric space", "earlier estimates" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.3924K" } } }