{ "id": "0708.3730", "version": "v1", "published": "2007-08-28T08:43:09.000Z", "updated": "2007-08-28T08:43:09.000Z", "title": "Densities for Rough Differential Equations under Hoermander's Condition", "authors": [ "Thomas Cass", "Peter Friz" ], "categories": [ "math.PR" ], "abstract": "We consider stochastic differential equations dY=V(Y)dX driven by a multidimensional Gaussian process X in the rough path sense. Using Malliavin Calculus we show that Y(t) admits a density for t in (0,T] provided (i) the vector fields V=(V_1,...,V_d) satisfy Hoermander's condition and (ii) the Gaussian driving signal X satisfies certain conditions. Examples of driving signals include fractional Brownian motion with Hurst parameter H>1/4, the Brownian Bridge returning to zero after time T and the Ornstein-Uhlenbeck process.", "revisions": [ { "version": "v1", "updated": "2007-08-28T08:43:09.000Z" } ], "analyses": { "subjects": [ "60H07", "60G17" ], "keywords": [ "rough differential equations", "rough path sense", "fractional brownian motion", "satisfy hoermanders condition", "multidimensional gaussian process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.3730C" } } }