{ "id": "0708.3619", "version": "v1", "published": "2007-08-27T14:41:45.000Z", "updated": "2007-08-27T14:41:45.000Z", "title": "Explicit Evaluation of Certain Exponential Sums of Quadratic Functions over $\\Bbb F_{p^n}$, $p$ Odd", "authors": [ "Sandra Draper", "Xiang-dong Hou" ], "comment": "28 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be an odd prime and let $f(x)=\\sum_{i=1}^ka_ix^{p^{\\alpha_i}+1}\\in\\Bbb F_{p^n}[x]$, where $0\\le \\alpha_1<...<\\alpha_k$. We consider the exponential sum $S(f,n)=\\sum_{x\\in\\Bbb F_{p^n}}e_n(f(x))$, where $e_n(y)=e^{2\\pi i\\text{Tr}_n(y)/p}$, $y\\in\\Bbb F_{p^n}$, $\\text{Tr}_n=\\text{Tr}_{\\Bbb F_{p^n}/\\Bbb F_p}$. There is an effective way to compute the nullity of the quadratic form $\\text{Tr}_{mn}(f(x))$ for all integer $m>0$. Assuming that all such nullities are known, we find relative formulas for $S(f,mn)$ in terms of $S(f,n)$ when $\\nu_p(m) \\le \\min\\{\\nu_p(\\alpha_i):1\\le i\\le k\\}$, where $\\nu_p$ is the $p$-adic order. We also find an explicit formula for $S(f,n)$ when $\\nu_2(\\alpha_1)=...= \\nu_2(\\alpha_k)<\\nu_2(n)$. These results generalize those by Carlitz and by Baumert and McEliece. Parallel results with $p=2$ were obtained in a previous paper by the second author.", "revisions": [ { "version": "v1", "updated": "2007-08-27T14:41:45.000Z" } ], "analyses": { "subjects": [ "11T23" ], "keywords": [ "exponential sum", "quadratic functions", "explicit evaluation", "adic order", "quadratic form" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.3619D" } } }