{ "id": "0708.3067", "version": "v2", "published": "2007-08-22T18:15:53.000Z", "updated": "2007-09-06T20:31:06.000Z", "title": "On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\\infty,\\infty}$", "authors": [ "Alexey Cheskidov", "Roman Shvydkoy" ], "comment": "updated version -- a reference was added and a bug fixed", "categories": [ "math.AP" ], "abstract": "We show that if a Leray-Hopf solution $u$ to the 3D Navier-Stokes equation belongs to $C((0,T]; B^{-1}_{\\infty,\\infty})$ or its jumps in the $B^{-1}_{\\infty,\\infty}$-norm do not exceed a constant multiple of viscosity, then $u$ is regular on $(0,T]$. Our method uses frequency local estimates on the nonlinear term, and yields an extension of the classical Ladyzhenskaya-Prodi-Serrin criterion.", "revisions": [ { "version": "v2", "updated": "2007-09-06T20:31:06.000Z" } ], "analyses": { "subjects": [ "76D03", "35Q30" ], "keywords": [ "weak solutions", "3d navier-stokes equation belongs", "regularity", "frequency local estimates", "constant multiple" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.3067C" } } }