{ "id": "0708.2771", "version": "v1", "published": "2007-08-21T08:09:04.000Z", "updated": "2007-08-21T08:09:04.000Z", "title": "Approximations to Euler's constant", "authors": [ "Kh. Hessami Pilehrood", "T. Hessami Pilehrood" ], "comment": "11 pages", "journal": "Math. Inequal. Appl. 13 (2010), no. 4, 761--773", "categories": [ "math.NT" ], "abstract": "We study a problem of finding good approximations to Euler's constant $\\gamma=\\lim_{n\\to\\infty}S_n,$ where $S_n=\\sum_{k=1}^n\\frac{1}{n}-\\log(n+1),$ by linear forms in logarithms and harmonic numbers. In 1995, C. Elsner showed that slow convergence of the sequence $S_n$ can be significantly improved if $S_n$ is replaced by linear combinations of $S_n$ with integer coefficients. In this paper, considering more general linear transformations of the sequence $S_n$ we establish new accelerating convergence formulae for $\\gamma.$ Our estimates sharpen and generalize recent Elsner's, Rivoal's and author's results.", "revisions": [ { "version": "v1", "updated": "2007-08-21T08:09:04.000Z" } ], "analyses": { "subjects": [ "11Y60", "11Y35", "41A25" ], "keywords": [ "eulers constant", "approximations", "general linear transformations", "slow convergence", "authors results" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.2771H" } } }