{ "id": "0708.2281", "version": "v1", "published": "2007-08-16T20:30:24.000Z", "updated": "2007-08-16T20:30:24.000Z", "title": "A lower bound for the number of conjugacy classes of finite groups", "authors": [ "Thomas Michael Keller" ], "categories": [ "math.GR" ], "abstract": "In 2000, L. H\\'{e}thelyi and B. K\\\"{u}lshammer proved that if $p$ is a prime number dividing the order of a finite solvable group $G$, then $G$ has at least $2\\sqrt{p-1}$ conjugacy classes. In this paper we show that if $p$ is large, the result remains true for arbitrary finite groups.", "revisions": [ { "version": "v1", "updated": "2007-08-16T20:30:24.000Z" } ], "analyses": { "subjects": [ "20E45" ], "keywords": [ "conjugacy classes", "lower bound", "arbitrary finite groups", "result remains true", "finite solvable group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.2281K" } } }