{ "id": "0708.2138", "version": "v1", "published": "2007-08-16T05:41:41.000Z", "updated": "2007-08-16T05:41:41.000Z", "title": "Torus quotients of homogeneous spaces of the general linear group and the standard representation of certain symmetric groups", "authors": [ "S. S. Kannan", "Pranab Sardar" ], "comment": "19 pages", "categories": [ "math.AG", "math.RT" ], "abstract": "We give a stratification of the GIT quotient of the Grassmannian $G_{2,n}$ modulo the normaliser of a maximal torus of $SL_{n}(k)$ with respect to the ample generator of the Picard group of $G_{2,n}$. We also prove that the flag variety $GL_{n}(k)/B_{n}$ can be obtained as a GIT quotient of $GL_{n+1}(k)/B_{n+1}$ modulo a maximal torus of $SL_{n+1}(k)$ for a suitable choice of an ample line bundle on $GL_{n+1}(k)/B_{n+1}$.", "revisions": [ { "version": "v1", "updated": "2007-08-16T05:41:41.000Z" } ], "analyses": { "subjects": [ "14Lxx" ], "keywords": [ "general linear group", "symmetric groups", "torus quotients", "standard representation", "homogeneous spaces" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.2138K" } } }