{ "id": "0708.2116", "version": "v1", "published": "2007-08-15T23:21:09.000Z", "updated": "2007-08-15T23:21:09.000Z", "title": "A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow", "authors": [ "Xiaobing Feng", "Haijun Wu" ], "comment": "29 pages and 7 figures", "categories": [ "math.NA", "math.AP" ], "abstract": "This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation $u_t+\\De\\bigl(\\eps \\De u-\\eps^{-1} f(u)\\bigr)=0$. It is shown that the {\\it a posteriori} error bounds depends on $\\eps^{-1}$ only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct an adaptive algorithm for computing the solution of the Cahn-Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.", "revisions": [ { "version": "v1", "updated": "2007-08-15T23:21:09.000Z" } ], "analyses": { "subjects": [ "65M60", "65M12", "65M15", "53A10" ], "keywords": [ "posteriori error estimates", "hele-shaw flow", "fourth order cahn-hilliard equation", "mixed finite element approximations", "sharp interface limit" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.2116F" } } }