{ "id": "0708.2102", "version": "v1", "published": "2007-08-15T20:42:13.000Z", "updated": "2007-08-15T20:42:13.000Z", "title": "Gain of Regularity for the KP-I Equation", "authors": [ "Julie Levandosky", "Mauricio Sepulveda", "Octavio Vera" ], "journal": "Journal of Differential Equations 245, 3 (2008) 762-808", "doi": "10.1016/j.jde.2008.01.016", "categories": [ "math.AP" ], "abstract": "In this paper we study the smoothness properties of solutions to the KP-I equation. We show that the equation's dispersive nature leads to a gain in regularity for the solution. In particular, if the initial data $\\phi$ possesses certain regularity and sufficient decay as $x \\to \\infty$, then the solution $u(t)$ will be smoother than $\\phi$ for $0 < t \\leq T$ where $T$ is the existence time of the solution.", "revisions": [ { "version": "v1", "updated": "2007-08-15T20:42:13.000Z" } ], "analyses": { "keywords": [ "kp-i equation", "regularity", "smoothness properties", "existence time", "initial data" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Differential Equations", "year": 2008, "volume": 245, "number": 3, "pages": 762 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008JDE...245..762L" } } }