{ "id": "0708.1212", "version": "v1", "published": "2007-08-09T04:18:58.000Z", "updated": "2007-08-09T04:18:58.000Z", "title": "On a Phase Separation Point for One - Dimensional Models", "authors": [ "N. N. Ganikhodjaev", "U. A. Rozikov" ], "comment": "10 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "In the paper a one-dimensional model with nearest - neighbor interactions $I_n, n\\in \\Z$ and spin values $\\pm 1$ is considered. It is known that under some conditions on parameters $I_n$ the phase transition occurs for the model. We define a notion of \"phase separation\" point between two phases. We prove that the expectation value of the point is zero and its the mean square fluctuation is bounded by a constant $C(\\beta)$ which tends to 1/4 if $\\beta\\to\\infty$. Here $\\beta=\\frac{1}{T}$, $ T>0$-temperature.", "revisions": [ { "version": "v1", "updated": "2007-08-09T04:18:58.000Z" } ], "analyses": { "subjects": [ "82B05", "82B20" ], "keywords": [ "phase separation point", "dimensional models", "mean square fluctuation", "phase transition occurs", "neighbor interactions" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.1212G" } } }