{ "id": "0708.1174", "version": "v4", "published": "2007-08-08T21:06:24.000Z", "updated": "2011-09-06T09:46:27.000Z", "title": "On some lower bounds on the number of bicliques needed to cover a bipartite graph", "authors": [ "Dirk Oliver Theis" ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "The biclique covering number of a bipartite graph G is the minimum number of complete bipartite subgraphs (bicliques) whose union contains every edge of G. In this little note we compare three lower bounds on the biclique covering number: A bound jk(G) proposed by Jukna & Kulikov (Discrete Math. 2009); the well-known fooling set bound fool(G); the \"tensor-power\" fooling set bound fool^\\infty(G). We show jk \\le fool le fool^\\infty \\le min_Q (rk Q)^2, where the minimum is taken over all matrices with a certain zero/nonzero-pattern. Only the first inequality is really novel, the third one generalizes a result of Dietzfelbinger, Hromkovi\\v{c}, Schnitger (1994). We also give examples for which fool \\ge (rk)^{log_4 6} improving on Dietzfelbinger et al.", "revisions": [ { "version": "v4", "updated": "2011-09-06T09:46:27.000Z" } ], "analyses": { "subjects": [ "05C70", "94A05", "15B48" ], "keywords": [ "bipartite graph", "lower bounds", "biclique covering number", "well-known fooling set bound fool" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0708.1174T" } } }