{ "id": "0707.4118", "version": "v1", "published": "2007-07-27T13:59:38.000Z", "updated": "2007-07-27T13:59:38.000Z", "title": "The Hochschild cohomology of a Poincaré algebra", "authors": [ "Po Hu" ], "comment": "12 pages", "categories": [ "math.AT" ], "abstract": "In this note, we define the notion of a cactus set, and show that its geometric realization is naturally an algebra over Voronov's cactus operad, which is equivalent to the framed 2-dimensional little disks operad $\\mathcal{D}_2$. Using this, we show that the Hochschild cohomology of a Poincar\\'e algebra A is an algebra over (the chain complexes of) $\\mathcal{D}_2$.", "revisions": [ { "version": "v1", "updated": "2007-07-27T13:59:38.000Z" } ], "analyses": { "subjects": [ "55P48", "16E40" ], "keywords": [ "hochschild cohomology", "little disks operad", "voronovs cactus operad", "cactus set", "geometric realization" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.4118H" } } }