{ "id": "0707.3928", "version": "v2", "published": "2007-07-26T14:14:18.000Z", "updated": "2009-10-15T15:44:07.000Z", "title": "Asymptotic expansions for functions of the increments of certain Gaussian processes", "authors": [ "Michael Marcus", "Jay Rosen" ], "categories": [ "math.PR" ], "abstract": "Let $G=\\{G(x),x\\ge 0\\}$ be a mean zero Gaussian process with stationary increments and set $\\sigma^2(|x-y|)= E(G(x)-G(y))^2$. Let $f$ be a function with $Ef^{2}(\\eta)<\\ff$, where $\\eta=N(0,1)$. When $\\sigma^2$ is regularly varying at zero and \\[ \\lim_{h\\to 0}{h^2\\over \\sigma^2(h)}= 0\\qquad {and}\\qquad \\lim_{h\\to 0}{\\sigma^2(h)\\over h}= 0 \\quad {but} \\quad ({d^{2}\\over ds^2}\\sigma^2(s))^{j_0} \\] is locally integrable for some integer $j_0\\ge 1$, and satisfies some additional regularity conditions, \\bea && \\int_a^bf(\\frac{G(x+h)-G(x)}{\\sigma (h)}) dx \\label{abst}\\nn &&\\qquad = \\sum_{j=0}^{j_0} (h/\\sigma(h))^{j} {E(H_{j}(\\eta) f(\\eta))\\over\\sqrt {j!}} :(G')^{j}:(I_{[a,b]}) +o({h\\over\\sigma (h)})^{j_0}\\nn \\eea in $L^2$. Here $H_j$ is the $j$-th Hermite polynomial. Also $:(G')^{j}:(I_{[a,b]})$ is a $j $-th order Wick power Gaussian chaos constructed from the Gaussian field $ G'(g) $, with covariance \\[ E(G'(g)G'(\\wt g)) = \\int \\int \\rho (x-y)g(x)\\wt g(y) dx dy\\label{3.7bqs}, \\] where $ \\rho(s)={1/2}{d^{2}\\over ds^2}\\sigma^2(s)$.", "revisions": [ { "version": "v2", "updated": "2009-10-15T15:44:07.000Z" } ], "analyses": { "subjects": [ "F25" ], "keywords": [ "gaussian processes", "asymptotic expansions", "power gaussian chaos", "increments", "th order wick power gaussian" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.3928M" } } }