{ "id": "0707.2722", "version": "v1", "published": "2007-07-18T13:30:10.000Z", "updated": "2007-07-18T13:30:10.000Z", "title": "A remark on global well-posedness below L^2 for the gKdV-3 equation", "authors": [ "Axel Gruenrock", "Mahendra Panthee", "Jorge Drumond Silva" ], "comment": "6 pages", "categories": [ "math.AP" ], "abstract": "The I-method in its first version as developed by Colliander et al. is applied to prove that the Cauchy-problem for the generalised Korteweg-de Vries equation of order three (gKdV-3) is globally well-posed for large real-valued data in the Sobolev space H^s, provided s>-1/42.", "revisions": [ { "version": "v1", "updated": "2007-07-18T13:30:10.000Z" } ], "analyses": { "subjects": [ "35Q53" ], "keywords": [ "global well-posedness", "generalised korteweg-de vries equation", "first version", "large real-valued data", "sobolev space" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.2722G" } } }