{ "id": "0707.2707", "version": "v1", "published": "2007-07-18T12:05:36.000Z", "updated": "2007-07-18T12:05:36.000Z", "title": "A superadditivity and submultiplicativity property for cardinalities of sumsets", "authors": [ "Katalin Gyarmati", "Imre Z. Ruzsa", "Mate Matolcsi" ], "comment": "9 pages", "categories": [ "math.CO", "math.AC" ], "abstract": "For finite sets of integers $A_1, A_2 ... A_n$ we study the cardinality of the $n$-fold sumset $A_1+... +A_n$ compared to those of $n-1$-fold sumsets $A_1+... +A_{i-1}+A_{i+1}+... A_n$. We prove a superadditivity and a submultiplicativity property for these quantities. We also examine the case when the addition of elements is restricted to an addition graph between the sets.", "revisions": [ { "version": "v1", "updated": "2007-07-18T12:05:36.000Z" } ], "analyses": { "subjects": [ "11B50", "11B75", "11P70" ], "keywords": [ "submultiplicativity property", "cardinality", "superadditivity", "fold sumset" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.2707G" } } }