{ "id": "0707.1899", "version": "v2", "published": "2007-07-12T22:39:33.000Z", "updated": "2007-07-18T03:59:14.000Z", "title": "The $\\ell^2$-homology of even Coxeter groups", "authors": [ "Timothy A. Schroeder" ], "comment": "15 pages, 1 figure", "categories": [ "math.GT", "math.AT", "math.GR" ], "abstract": "Given a Coxeter system (W,S), there is an associated CW-complex, Sigma, on which W acts properly and cocompactly. We prove that when the nerve L of (W,S) is a flag triangulation of the 3-sphere, then the reduced $\\ell^2$-homology of Sigma vanishes in all but the middle dimension.", "revisions": [ { "version": "v2", "updated": "2007-07-18T03:59:14.000Z" } ], "analyses": { "keywords": [ "coxeter groups", "coxeter system", "flag triangulation", "sigma vanishes" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.1899S" } } }