{ "id": "0707.1860", "version": "v1", "published": "2007-07-12T18:52:59.000Z", "updated": "2007-07-12T18:52:59.000Z", "title": "The Gauss-Bonnet-Grotemeyer Theorem in spaces of constant curvature", "authors": [ "Eric L. Grinberg", "Li Haizhong" ], "comment": "10 pages", "categories": [ "math.DG" ], "abstract": "In 1963, K.P.Grotemeyer proved an interesting variant of the Gauss-Bonnet Theorem. Let M be an oriented closed surface in the Euclidean space R^3 with Euler characteristic \\chi(M), Gauss curvature G and unit normal vector field n. Grotemeyer's identity replaces the Gauss-Bonnet integrand G by the normal moment ^2G, where $a$ is a fixed unit vector. Grotemeyer showed that the total integral of this integrand is (2/3)pi times chi(M). We generalize Grotemeyer's result to oriented closed even-dimesional hypersurfaces of dimension n in an (n+1) ndimensional space form N^{n+1}(k).", "revisions": [ { "version": "v1", "updated": "2007-07-12T18:52:59.000Z" } ], "analyses": { "subjects": [ "53C42", "53A10" ], "keywords": [ "constant curvature", "gauss-bonnet-grotemeyer theorem", "unit normal vector field", "grotemeyers identity replaces", "pi times chi" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.1860G" } } }