{ "id": "0707.1143", "version": "v3", "published": "2007-07-08T15:31:51.000Z", "updated": "2009-01-28T07:29:58.000Z", "title": "Selmer groups for elliptic curves in Z_l^d-extensions of function fields of characteristic p", "authors": [ "Andrea Bandini", "Ignazio Longhi" ], "comment": "Final version to appear in Annales de l'Institut Fourier", "categories": [ "math.NT" ], "abstract": "Let $F$ be a function field of characteristic $p>0$, $\\F/F$ a Galois extension with $Gal(\\F/F)\\simeq \\Z_l^d$ (for some prime $l\\neq p$) and $E/F$ a non-isotrivial elliptic curve. We study the behaviour of Selmer groups $Sel_E(L)_r$ ($r$ any prime) as $L$ varies through the subextensions of $\\F$ via appropriate versions of Mazur's Control Theorem. As a consequence we prove that $Sel_E(\\F)_r$ is a cofinitely generated (in some cases cotorsion) $\\Z_r[[Gal(\\F/F)]]$-module.", "revisions": [ { "version": "v3", "updated": "2009-01-28T07:29:58.000Z" } ], "analyses": { "subjects": [ "14H52", "11R23" ], "keywords": [ "function field", "selmer groups", "characteristic", "non-isotrivial elliptic curve", "mazurs control theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.1143B" } } }