{ "id": "0707.0673", "version": "v1", "published": "2007-07-04T17:47:49.000Z", "updated": "2007-07-04T17:47:49.000Z", "title": "Minimal geodesics and topological entropy on T^2", "authors": [ "Eva Leschinsky" ], "comment": "12 pages", "categories": [ "math.DS", "math.DG" ], "abstract": "Let (T^2, g) be a two-dimensional Riemannian torus. In this paper we prove that the topological entropy of the geodesic flow restricted to the set of initial conditions of minimal geodesics vanishes, independent of the choice of the Riemannian metric.", "revisions": [ { "version": "v1", "updated": "2007-07-04T17:47:49.000Z" } ], "analyses": { "keywords": [ "topological entropy", "two-dimensional riemannian torus", "minimal geodesics vanishes", "riemannian metric", "initial conditions" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.0673L" } } }