{ "id": "0707.0538", "version": "v1", "published": "2007-07-04T04:59:37.000Z", "updated": "2007-07-04T04:59:37.000Z", "title": "Transformations of infinitely divisible distributions via improper stochastic integrals", "authors": [ "Ken-iti Sato" ], "comment": "44 pages", "categories": [ "math.PR" ], "abstract": "Let $X^{(\\mu)}(ds)$ be an $\\mathbb{R}^d$-valued homogeneous independently scattered random measure over $\\mathbb{R}$ having $\\mu$ as the distribution of $X^{(\\mu)}((t,t+1])$. Let $f(s)$ be a nonrandom measurable function on an open interval $(a,b)$ where $-\\infty\\leqslant a