{ "id": "0707.0338", "version": "v2", "published": "2007-07-03T05:03:24.000Z", "updated": "2007-09-11T17:38:56.000Z", "title": "Integral pinched 3-manifolds are space forms", "authors": [ "Giovanni Catino", "Zindine Djadli" ], "comment": "Some misprints in the first version are corrected", "categories": [ "math.DG", "math.AP" ], "abstract": "In this paper we prove that, under an explicit integral pinching assumption between the $L^2$-norm of the Ricci curvature and the $L^2$-norm of the scalar curvature, a closed 3-manifold with positive scalar curvature admits an Einstein metric with positive curvature. In particular this implies that the manifold is diffeomorphic to a quotient of ${\\Bbb S}^3$.", "revisions": [ { "version": "v2", "updated": "2007-09-11T17:38:56.000Z" } ], "analyses": { "subjects": [ "53C24", "53C20", "53C21", "53C25" ], "keywords": [ "space forms", "explicit integral pinching assumption", "positive scalar curvature admits", "ricci curvature" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0707.0338C" } } }