{ "id": "0706.4420", "version": "v1", "published": "2007-06-29T13:56:47.000Z", "updated": "2007-06-29T13:56:47.000Z", "title": "Bounds on Van der Waerden Numbers and Some Related Functions", "authors": [ "Tom Brown", "Bruce M. Landman", "Aaron Robertson" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "For positive integers $s$ and $k_1, k_2, ..., k_s$, let $w(k_1,k_2,...,k_s)$ be the minimum integer $n$ such that any $s$-coloring $\\{1,2,...,n\\} \\to \\{1,2,...,s\\}$ admits a $k_i$-term arithmetic progression of color $i$ for some $i$, $1 \\leq i \\leq s$. In the case when $k_1=k_2=...=k_s=k$ we simply write $w(k;s)$. That such a minimum integer exists follows from van der Waerden's theorem on arithmetic progressions. In the present paper we give a lower bound for $w(k,m)$ for each fixed $m$. We include a table with values of $w(k,3)$ which match this lower bound closely for $5 \\leq k \\leq 16$. We also give an upper bound for $w(k,4)$, an upper bound for $w(4;s)$, and a lower bound for $w(k;s)$ for an arbitrary fixed $k$. We discuss a number of other functions that are closely related to the van der Waerden function.", "revisions": [ { "version": "v1", "updated": "2007-06-29T13:56:47.000Z" } ], "analyses": { "subjects": [ "05D10" ], "keywords": [ "van der waerden numbers", "related functions", "lower bound", "upper bound", "van der waerdens theorem" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.4420B" } } }