{ "id": "0706.4267", "version": "v3", "published": "2007-06-28T16:32:43.000Z", "updated": "2009-07-06T14:02:09.000Z", "title": "A mixed problem for the infinity laplacian via Tug-of-War games", "authors": [ "Fernando Charro", "Jesus Garcia Azorero", "Julio D. Rossi" ], "comment": "13 pages. Final version", "categories": [ "math.AP" ], "abstract": "In this paper we prove that a function $ u\\in\\mathcal{C}(\\bar{\\Omega})$ is the continuous value of the Tug-of-War game described in \\cite{PSSW} if and only if it is the unique viscosity solution to the infinity laplacian with mixed boundary conditions {-\\Delta_{\\infty}u(x)=0\\quad & \\text{in} \\Omega, \\frac{\\partial u}{\\partial n}(x)=0\\quad & \\text{on} \\Gamma_N, u(x)=F(x)\\quad & \\text{on} \\Gamma_D. By using the results in \\cite{PSSW}, it follows that this viscous PDE problem has a unique solution, which is the unique {\\it absolutely minimizing Lipschitz extension} to the whole $\\bar{\\Omega}$ (in the sense of \\cite{Aronsson} and \\cite{PSSW}) of the boundary data $ F:\\Gamma_D\\to\\R $.", "revisions": [ { "version": "v3", "updated": "2009-07-06T14:02:09.000Z" } ], "analyses": { "subjects": [ "35J60", "91A05", "49L25", "35J25" ], "keywords": [ "infinity laplacian", "tug-of-war game", "mixed problem", "unique viscosity solution", "mixed boundary conditions" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.4267C" } } }