{ "id": "0706.4178", "version": "v3", "published": "2007-06-28T10:11:34.000Z", "updated": "2009-01-13T08:45:48.000Z", "title": "Lattice polytopes of degree 2", "authors": [ "Jaron Treutlein" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "A theorem of Scott gives an upper bound for the normalized volume of lattice polygons with exactly $i>0$ interior lattice points. We will show that the same bound is true for the normalized volume of lattice polytopes of degree 2 even in higher dimensions. In particular, there is only a finite number of quadratic polynomials with fixed leading coefficient being the $h^*$-polynomial of a lattice polytope.", "revisions": [ { "version": "v3", "updated": "2009-01-13T08:45:48.000Z" } ], "analyses": { "subjects": [ "52B20" ], "keywords": [ "lattice polytope", "interior lattice points", "normalized volume", "lattice polygons", "upper bound" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.4178T" } } }