{ "id": "0706.3626", "version": "v1", "published": "2007-06-25T12:24:50.000Z", "updated": "2007-06-25T12:24:50.000Z", "title": "A Problem in Last-Passage Percolation", "authors": [ "Harry Kesten", "Vladas Sidoravicius" ], "comment": "1 figure", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Let $\\{X(v), v \\in \\Bbb Z^d \\times \\Bbb Z_+\\}$ be an i.i.d. family of random variables such that $P\\{X(v)= e^b\\}=1-P\\{X(v)= 1\\} = p$ for some $b>0$. We consider paths $\\pi \\subset \\Bbb Z^d \\times \\Bbb Z_+$ starting at the origin and with the last coordinate increasing along the path, and of length $n$. Define for such paths $W(\\pi) = \\text{number of vertices $\\pi_i, 1 \\le i \\le n$, with}X(\\pi_i) = e^b$. Finally let $N_n(\\al) = \\text{number of paths $\\pi$ of length $n$ starting at $\\pi_0 = \\bold 0$ and with $W(\\pi) \\ge \\al n$.}$ We establish several properties of $\\lim_{n \\to \\infty} [N_n]^{1/n}$.", "revisions": [ { "version": "v1", "updated": "2007-06-25T12:24:50.000Z" } ], "analyses": { "subjects": [ "60K35", "60J15" ], "keywords": [ "last-passage percolation", "random variables", "coordinate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.3626K" } } }