{ "id": "0706.3618", "version": "v1", "published": "2007-06-25T11:21:41.000Z", "updated": "2007-06-25T11:21:41.000Z", "title": "Low Regularity local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon system", "authors": [ "Achenef Tesfahun" ], "categories": [ "math.AP" ], "abstract": "We prove that the Cauchy problem for the Dirac-Klein-Gordon system of equations in 1+3 dimensions is locally well-posed in a range of Sobolev spaces for the Dirac spinor and the meson field. The result contains and extends the earlier known results for the same problem. Our proof relies on the null structure in the system, and bilinear spacetime estimates of Klainerman-Machedon type.", "revisions": [ { "version": "v1", "updated": "2007-06-25T11:21:41.000Z" } ], "analyses": { "subjects": [ "35Q40", "35L70" ], "keywords": [ "low regularity local well-posedness", "dimensional dirac-klein-gordon system", "bilinear spacetime estimates", "result contains", "cauchy problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.3618T" } } }