{ "id": "0706.3334", "version": "v1", "published": "2007-06-22T13:55:45.000Z", "updated": "2007-06-22T13:55:45.000Z", "title": "Radius and profile of random planar maps with faces of arbitrary degrees", "authors": [ "Grégory Miermont", "Mathilde Weill" ], "comment": "25 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We prove some asymptotic results for the radius and the profile of large random rooted planar maps with faces of arbitrary degrees. Using a bijection due to Bouttier, Di Francesco and Guitter between rooted planar maps and certain four-type trees with positive labels, we derive our results from a conditional limit theorem for four-type spatial Galton-Watson trees.", "revisions": [ { "version": "v1", "updated": "2007-06-22T13:55:45.000Z" } ], "analyses": { "subjects": [ "60F17", "60J80", "05J30" ], "keywords": [ "random planar maps", "arbitrary degrees", "large random rooted planar maps", "four-type spatial galton-watson trees", "conditional limit theorem" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.3334M" } } }