{ "id": "0706.3246", "version": "v1", "published": "2007-06-22T01:43:58.000Z", "updated": "2007-06-22T01:43:58.000Z", "title": "On finite groups whose derived subgroup has bounded rank", "authors": [ "Karoly Podoski", "Balazs Szegedy" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group with derived subgroup of rank $r$. We prove that $\\gzz\\leq |G'|^{2r}$. Motivated by the results of I. M. Isaacs in \\cite{isa} we show that if $G$ is capable then $\\gz\\leq |G'|^{4r}$. This answers a question of L. Pyber. We prove that if $G$ is a capable $p$-group then the rank of $G/\\mathbf{Z}(G)$ is bounded above in terms of the rank of $G'$.", "revisions": [ { "version": "v1", "updated": "2007-06-22T01:43:58.000Z" } ], "analyses": { "subjects": [ "20D99" ], "keywords": [ "finite group", "derived subgroup", "bounded rank" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.3246P" } } }