{ "id": "0706.2321", "version": "v1", "published": "2007-06-15T15:44:49.000Z", "updated": "2007-06-15T15:44:49.000Z", "title": "Lower bounds for moments of zeta prime rho", "authors": [ "Micah B. Milinovich", "Nathan Ng" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "Assuming the Riemann Hypothesis, we establish lower bounds for moments of the derivative of the Riemann zeta-function averaged over the non-trivial zeros of $\\zeta(s)$. Our proof is based upon a recent method of Rudnick and Soundararajan that provides analogous bounds for moments of $L$-functions at the central point, averaged over families.", "revisions": [ { "version": "v1", "updated": "2007-06-15T15:44:49.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26" ], "keywords": [ "zeta prime rho", "riemann hypothesis", "central point", "non-trivial zeros", "establish lower bounds" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.2321M" } } }