{ "id": "0706.2257", "version": "v2", "published": "2007-06-15T10:00:56.000Z", "updated": "2007-10-04T09:09:11.000Z", "title": "Algebraic K-theory and cubical descent", "authors": [ "Pere Pascual Gainza", "Llorenc Rubio i Pons" ], "comment": "18 pages", "categories": [ "math.AG" ], "abstract": "In this note we apply Guillen-Navarro descent theorem, \\cite{GN02}, to define a descent variant of the algebraic $K$-theory of varieties over a field of characteristic zero, $\\mathcal{KD}(X)$, which coincides with $\\mathcal{K}(X)$ for smooth varieties. After a result of Haesemeyer, this new theory is equivalent to the homotopy algebraic $K$-theory introduced by Weibel. We also prove that there is a natural weight filtration on the groups $KH_\\ast(X)$.", "revisions": [ { "version": "v2", "updated": "2007-10-04T09:09:11.000Z" } ], "analyses": { "keywords": [ "algebraic k-theory", "cubical descent", "apply guillen-navarro descent theorem", "natural weight filtration", "characteristic zero" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2007arXiv0706.2257G" } } }