{ "id": "0706.2104", "version": "v1", "published": "2007-06-14T12:22:08.000Z", "updated": "2007-06-14T12:22:08.000Z", "title": "Homogenization of nonlinear scalar conservation laws", "authors": [ "Anne-Laure Dalibard" ], "comment": "34 pages", "journal": "Archive for Rational Mechanics and Analysis (2008) ISSN: 0003-9527 (Print) 1432-0673 (Online)", "doi": "10.1007/s00205-008-0123-7", "categories": [ "math.AP" ], "abstract": "We study the limit as $\\e\\to 0$ of the entropy solutions of the equation $\\p_t \\ue + \\dv_x[A(\\frac{x}{\\e},\\ue)] =0$. We prove that the sequence $\\ue$ two-scale converges towards a function $u(t,x,y)$, and $u$ is the unique solution of a limit evolution problem. The remarkable point is that the limit problem is not a scalar conservation law, but rather a kinetic equation in which the macroscopic and microscopic variables are mixed. We also prove a strong convergence result in $L^1_{\\text{loc}}$.", "revisions": [ { "version": "v1", "updated": "2007-06-14T12:22:08.000Z" } ], "analyses": { "subjects": [ "35B27", "35L60" ], "keywords": [ "nonlinear scalar conservation laws", "homogenization", "strong convergence result", "limit evolution problem", "microscopic variables" ], "tags": [ "journal article" ], "publication": { "journal": "Archive for Rational Mechanics and Analysis", "year": 2009, "month": "Apr", "volume": 192, "number": 1, "pages": 117 }, "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009ArRMA.192..117D" } } }