{ "id": "0706.1529", "version": "v1", "published": "2007-06-11T17:55:34.000Z", "updated": "2007-06-11T17:55:34.000Z", "title": "On multipartite posets", "authors": [ "Geir Agnarsson" ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "A poset $\\mathbf{P} = (X,\\preceq)$ is {\\em $m$-partite} if $X$ has a partition $X = X_1 \\cup ... \\cup X_m$ such that (1) each $X_i$ forms an antichain in $\\mathbf{P}$, and (2) $x\\prec y$ implies $x\\in X_i$ and $y\\in X_j$ where $i